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PROFESSOR: All right, well I'd like to thank you for inviting me again to talk to the poker class. It's

always great to come here, and we're going to be having a tournament in a couple

weeks, so good luck for the people participating in that. Actually, I'm coming back in

another two weeks because I think [INAUDIBLE] a Harvard MIT math tournament

for high school kids.

I really love visiting MIT. I just wish it were at some other time besides the winter.

Then it would be perfect. All right, today I'm going to talk about the University of

Alberta's Cepheus computer program. It supposedly solved poker. We're going to

talk about what they actually did.

[LAUGHTER]

There seems to be a lot of buzz about this, so I thought this was a good

[INAUDIBLE] to do. So I have to tell you that Jared and I did not work directly with

the University of Alberta people, but we are very familiar with their methods and

have actually tried some of their coding techniques. So we're pretty familiar with the

same research that's going on. To It's sort of an, I think, objective commentary.

So by the way, as the lecture goes on, you can interrupt with questions. Just raise

your hands if something is unclear because I've been told I have about 80 minutes.

Probably spend 55 and then save the rest for questions.

All right, so that line of talk-- first I'm going to talk about what the Cepheus

accomplished, what the University of Alberta people accomplished, and I'm going to

bring that up by discussing game theory optimal energies in poker. How many of

you know what game [INAUDIBLE] is. I just want to know [INAUDIBLE] or what a

[INAUDIBLE] is. Raise your hands. OK. So about 1/2, 2/3. Good.
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I'm going to do a quick introduction to what game theory [INAUDIBLE] is. We're

going to talk about a simple poker game and solutions to it. And then I'm going to go

into their algorithm, which is written [INAUDIBLE]. They used the method of

counterfactual [INAUDIBLE]. Actually, the method they used to push through to the

solution of the problem is counter CF plus, which is basically the original

[INAUDIBLE] some shortcuts, which we'll discuss.

After this, though, we're going to think about extensions of computer solutions to

other games, including [INAUDIBLE] games and multiplayer games. A couple

people have questions about [INAUDIBLE] no limit program. We'll talk about what

they're work entailed if questions lead in that direction.

All right, let's talk about what Cepheus accomplished. It's a game theory

[INAUDIBLE] solution to heads up limit hold 'em. And so what does that mean? You

guys all know what limit hold 'em is, right? Good.

Basically, after [INAUDIBLE] few years, they've achieved and exploited less than

1/1000 of a big blind. So the first thing is not a boo perfect optimal solution. You can

still exploit it for about 1/1000 of a blind for a hand.

However, there are probably better games. This is like 1/20-- this is 1/2000 of a big

bet. You can actually play heads up for 50 years at normal speed and still have

some probability of losing. The reason for that is the standard deviation of heads up

limit hold 'em is about five big blinds. So you can just imagine how many hands you

have to play [INAUDIBLE] the significance. About, oh, 25 million.

So it's definitely a milestone. This is the first time a real poker game has been

solved. In math of poker, we solved ace, king, queen, [INAUDIBLE] on paper, but

[INAUDIBLE] a real poker games that's solved. However, given their previous work,

it was just a matter of [INAUDIBLE]. I remember two or three years ago they passed

the 1/100 of a big bet, which is sort of our measurement of significance. If you're

playing and you're winning more than 1/100 of a big bet for a hand, you can

[INAUDIBLE] it's a probable game. Below that comes theoretical. So it's definitely a
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milestone.

And basically I knew that, if they just maybe spent more CPU power, they would get

the solution. For 900 CPU years, we finally got the solution. So I don't know. If I had

that much CPU power, I'd solve a few problems, too. But it's still the miles

[INAUDIBLE]. It's great.

So what effect does this have on other games? Does this mean poker is going to go

the way of chess for computers who are just much better than we are? I don't think

we're there yet, and we'll talk about that later.

So let's talk about Nash equilibrium. So John F. Nash won the Nobel Prize in 1994

"for pioneering analysis of equilibrium in the theory of non-cooperative games." And

he extended the work of John Von Neumann and Oskar Morgenstern, [INAUDIBLE]

actually first considered these two player zero sum games. So Nash equilibrium is

just a set of strategies such that no player can actually improve their strategy and

make more [INAUDIBLE]. [INAUDIBLE] whatever.

In a the two player zero sum games, we refer to Nash equilibria as also very

optimal. The reason is because Nash equilibria are also the min/max solution. It's

the best you can do given that he can see what you do and respond. Simplest case

of Nash equilibria is, if you're playing rock, paper, scissors, what's the Nash

equilibrium? 1/3 each.

So that's not that exciting in this case, because both players kind of just t0. You

can't make more than 0, you can't make less than 0. So it doesn't seem to be that

exciting a solution, but in poker it's kind of exciting because they're kind of

dominated mistakes people play, or mistakes that actually lose money to the optimal

solution. So the reason 1/3, 1/3 is the Nash equilibrium because nobody can do

anything to improve their lot. It may not be the best thing to play. If a guy is playing

1/2 scissors and 1/2 rock, what should you play? 100% rock. Yeah, sort of like the

Aerosmith strategy.

[LAUGHTER]
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Right. So there are much better ways to play if your opponents deviate from Nash

equilibrium. So actually game theory optimal is not necessarily the best way to play,

even heads up. It's a way to play to kind of guaranteed you never lose. So that's

sort of the accomplishment. That's why we like to find these things. I know I could

just play this, and I'm not taking total advantage of my opponent's mistakes, but at

least I'm playing in away where he can't take advantage of me at all.

Let's do a simple example. So this is an example that I shared with the class a

couple years ago. So there are two players, Rose and Colin, and the reason the

players are called Rose and Colin are because this refers to [INAUDIBLE] games.

One player chooses a row, the other player chooses a column. That's their payoff.

And for a three player game, we introduce Larry, because there are layers. So the

two players are Rose and Colin. So each player antes $50 for $100 in a pot. Rose

looks at a card [INAUDIBLE] full deck, who will win in the pot a showdown if the card

is. Otherwise she will lose. So Rose can decide to bet $100 or check after she looks

at her card. So there's $100 in the pot. She looks at her card. She [INAUDIBLE]

whether to be $100 or to check.

If Rose bets, Colin may decide to call $100 or fold. If Colin folds, Rose wins. Well,

you guys know how poker works. If Colin calls, there's a showdown, and her card is

actually a spade. She wins the whole pot. Colin wins the pot.

So what's the optimal strategies for Rose and Colin? Does anybody know the

answer? Well, let's do one [INAUDIBLE] part of it. How often do you think

[INAUDIBLE] should call? Colin wants a call [INAUDIBLE] enough to make Rose's

bluffs probable. If Rose gets a spade, what is she going to do? Bet. She has nothing

to lose by betting, unless she's being very, very tricky, but it is correct to bet.

So let's see. If Rose doesn't pick up a spade and bluffs, how often does that have to

succeed for it to be profitable? There's $100 in the pot. She looks. If it's not a

spade, she has to bet $100, and how much is she risking? How much is she going

to win? It's actually $100 and another $100, right? Because there's $100 in a pot.

Sure, she anted something and made the pot, but she's spending $100. And if Colin
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calls, she's going to lose the $100. If Colin folds, she's going to win the $100 in the

pot, or she could have just given up.

So it's 1 to 1. So Rose should call half the time-- I mean Colin should call half the

time. Rose should bet to bluff in a 2 to 1 ratio, because that's the odds Colin gets to

call. So Rose should always bet a spade. If Colin calls 100% of the time, Rose will

just never bluff. If Colin never calls, Rose would just be every time. So there is kind

of an equilibrium there.

If Colin calls half the time, Rose will be indifferent to bluffing. She'll be negative $50

either way without a spade, and then $100 with a spade. Now, this is strategy for

[INAUDIBLE] and the correct strategy for Rose is this ratio of bluff to spade, which is

1 to 2. So Rose should basically bet half of her hearts. She can bet the high hearts,

and I guess with the eight of hearts she can decide whether-- is it the eight or the

seven? No, it's the-- yeah, it's the eight. [INAUDIBLE] with the eight of hearts she

can decide whether to bet or not like half the time. So these are Nash equilibrium

and game theory optimal strategies, and basically the value of the game is

negative-- is worth $12.50 to Colin. Any questions about this?

All right, so these are the strategies that the algorithm tries to find. Let's go on to the

algorithm now. Well, let's talk about what [INAUDIBLE] optimal is first. By the way,

there will be about five or so transparencies [INAUDIBLE] of math equations. So just

suffer through these. Those of you who understand are going to enjoy the later part,

but let's just talk formally about what game theory optimal means.

So there's this game function, u. It takes two strategies, an x strategy and a y

strategy, and it gives [INAUDIBLE]. If this was rock, paper, scissors, you would have

u of rock versus scissors to be 1, so on and so forth. It's positive for x and negative-

- x is trying to-- x gets u, and y loses u. That's the idea.

So one of things is we can take convex linear combinations of strategies. That is, if x

sigma xk are strategies and we have some coefficients that are all non-negative and

that sum to 1, we can make a new strategy as a linear combination of these

strategies. And also u is bi-linear means that the value of the game here is just the
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linear combination that [INAUDIBLE] sigma x. And it would be the same also for

sigma y.

This just means, suppose you have two strategies and you play 1/3 sigma x1 and

2/3 sigma x2, your payoff is going to be 1/3 of the payoff of sigma x1 and 1/3 payoff

of sigma x2. Hopefully that's pretty clear. Now we define a pair of strategies to be an

epsilonic rim if the best x can do against y is this strategy. The best y can do against

x is this strategy-- is epsilon. And if epsilon equals 0, these are in Nash equilibrium.

So after 900 PU hours, what they found were two strategies-- sigma x star, sigma y

star-- that were within 1/1000 of a big blind of equilibrium. And that's basically

[INAUDIBLE] accomplished.

So I'm going to actually go through the nitty gritty of how they did this in case you

would like to write on poker solver Sunday. So the big idea that they borrowed was

this idea of regret minimization, which is actually pretty cool. Suppose that each time

step t the player has a few pure strategies. We're assuming the player has a

handful of strategies. In poker, obviously, there's trillions of strategies, but-- two to

the trillions of strategies. But say he has two strategies. He can play one or two.

Suppose it's odds, or evens, or something like that. Or he has three strategies like

[INAUDIBLE].

So basically he chooses some sort of mixture of strategies at the beginning, and

we're only dealing with one player at this time. We're assuming the other guy--

we're assuming he's playing against some adversary that's all knowing. That's the

original set up, regret memorization. We'll talk about how this applies to game

theory in general.

Now with each time t we're given values ut of sigma k. So basically after he

determines this, the adversary decides what the value of use of t is, and basically

his payoff is just [INAUDIBLE] a linear combination of the things he picked. But the

idea is that the adversary can be adversarial. he can decide to make the

[INAUDIBLE] strategy score well some of the time, and the [INAUDIBLE] strategy

score badly some of the time.
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So basically now the idea is to calculate a regret. By the way, this is not the notation

that's used in the three or four papers they wrote on this, because I think they did

great work-- it's really written as a math paper. It looks like a particle physics paper,

which is-- actually for particle physics you need all the complex notation because

they're trying to describe something [INAUDIBLE] difficult. I think for computer

science papers usually don't need this. So I'll explain this, and then you guys

through reread their paper. I think that [INAUDIBLE] give you a quicker way to

understand their paper.

So there's this thing called regret of the k option at time t, which is just the sum of

the difference of playing k versus playing whatever you played. So basically you can

have positive regret or negative regrets. Negative regrets means that what you

played-- what you decided to play up to time t was better than just playing k at each

time step. So we're only concerned-- we're mostly concerned with the positive

regret, which means, instead of playing, you should have made-- you could have

made more money by playing option k.

So what's the significance of this? So the idea is we want the average regret, which

is this element divided by t. So basically you want the average regret, average

amount that you're kind missing out on to be less than epsilon sub t, where in

epsilon sub t is the [INAUDIBLE] converging to 0. If you have this, you have some

regret [INAUDIBLE].

So the cool thing about this is you can do regret matching. You can let these

weights-- first of all, you just look at the positive, the things with positive regret, and

weight the options. At each [INAUDIBLE], we basically weight the options that have

positive regrets accordingly. And if you're so lucky that nothing is positive regret,

you just randomly pick a strategy.

Let's do an example, because I think this is kind of unclear what it is. So let's just

say we have two strategies. The player can pick one, or the player can pick two at

each time, or the player can pick some mixture one and two. After a player does

that, the adversary comes out and says, well, one of them is worth [INAUDIBLE] and
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one of them is worth 1.

So let's just see how this works. So suppose at the first time step we picked sigma 2

because we don't have any regrets yet. We're just randomly picking a strategy--

[INAUDIBLE] sorry, sigma 1. We'll just randomly pick sigma 1. So the adversary now

gives us the value of sigma 1 0 and sigma 2 is 1. And you go, oh, well that means

that the regret of the first option is 0 and the regret of the second option is 1. We're

aware this first option is 0 is because we already played sigma 1, so you can't have

any regrets, either positive or negative, for playing sigma 1, because your option

was playing sigma 1, but you have some regret of not playing sigma 2. Sigma 2 was

kind of the winner here. If the two [INAUDIBLE] reversed, we would have r1 equals

0 and r2 equals the negative 1. And then we'd become happy because all our

regrets would be non-negative.

So at t equals 2, because we have zero regret here and regret 1 here, we actually

pick the strategy to be all sigma 2. Now the adversary says, OK, well the value of

sigma 1 is 1, and the value of sigma 2 is 0 for the second time step. So what

happens? Well, the same thing happens as before. Now we have regret of 1 on the

[INAUDIBLE], and then regret of [INAUDIBLE] on the second option.

So what do we do next? The regret [INAUDIBLE]. Well, flip a coin or just pick a

linear even combination of the two strategies, half of one and half the other. That's

what we can do. [INAUDIBLE] the same. So now the adversary says sigma 1 is 0

and sigma 2 is 1, which means that the regret of 1 actually goes to 0.5, and the

regret of 2 actually goes to 1.5. [INAUDIBLE]. 1 goes down a 1/2.

So now with these regrets our waiting is kind of the ratio of the two. It's 1/4 sigma 1

and 3/4 sigma 2. So now the adversary goes, OK, well sigma is 0. Sigma 2 is 1. So

this regret actually goes [INAUDIBLE] down by 3/4, and this goes up by a 1/4. And

since this is negative, now we pick the strategy to be sigma 2. [INAUDIBLE] and so

forth. Now the adversary [INAUDIBLE] for us and say, oh, it's really sigma 1. Then a

regret of sigma 1 would go up to 0.75, and so on and so forth.

So it seems that the adversary can make the job tough on us. Well actually, there is
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a theorem that says, for our example, [INAUDIBLE]. The square of the first regret if

it's positive plus the square of the second regret if it's positive is always going to be

less than or equal to t. And that's because, if [INAUDIBLE] these are both positive, it

goes, for example, you are really going r1 plus or minus whatever amount of r2

you're doing. And r2 of t now minus plus whatever amount of r1 you're doing. The

things that [INAUDIBLE] this you can see the cross terms cancel each other out.

This becomes 2 r1 r2 divided by r1 plus rt.

So you're left with this squared plus this squared plus this squared plus this

squared. And this squared plus this squared is going to be less than 1, so we have

this here, which means that the quadratic sum only [INAUDIBLE] by 1. We have this

bound. Why is this bound so great? Well if the square of the regrets are less than t,

that means the average regret is going to be [INAUDIBLE] 1 over root t. In fact, it's

kind of left as a homework problem. In a general case, our kt over t is less than n

minus 1 delta over root t, where delta is the maximum deviation of the options and

is just the number of options. Yeah?

AUDIENCE: I'm curious, is [INAUDIBLE] in terms of what is the strategy sigma. Number of like a

payoff?

PROFESSOR: No, no, no. A strategy sigma, in terms of poker strategy, is sort of a description of

what you would do. Suppose you get ace, six off suit pre-flop. A strategy would be a

descriptor of what you would do at each point of the hand.

So there's some significance in effect that this regret, average regret, goes to 0.

Well, the significance in terms of game theory optimal is suppose a peer's strategies

are-- suppose you have a bunch of peer strategies for x and bunch of peer

strategies for y. If we regret match, but instead of doing an adversary, we just say t

utility for x is just the utility for x playing against the sigma ty, and the utility for y is

just negative utility-- the game utility for y playing against sigma xt. This is kind of a

mutual regret matching. You do regret matching for x and y in each step, which

means you just modify x-- you compute the regrets at each step. Then you modify x

[INAUDIBLE] y strategy by this type of regret matching.
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And basically the strategies that you choose, the average strategy, which is the sum

of the strategies you have had all along divided by t. 1/t-- all the strategies you've

done in these t steps. And basically what happens is now, if you try [INAUDIBLE] to

exploit a [INAUDIBLE] strategy, again, this is the best x can do against y minus the

best y does against x. You compute this, and you add the sum of what actually

happened with x of t and y sub t, and so on and so forth.

You notice that this is the regret of k-- of x picking strategy k all the time. It's just y

picking strategy j all the time. So that's less than 2 epsilon over t because regrets

over t converge, so it's within [INAUDIBLE] game theory optimal. Basically what this

all means is basically suppose you choose your strategy, some mixture of stuff.

Your opponent tries to figure out how best he can exploit this strategy. By the way,

this is often called nemesis. I really like that name. Opponent figures out his

nemesis strategy against you.

Then, well, you get to see-- so his nemesis strategies-- unless you're playing the

exact game theory optimal strategies-- is always going to be better than the game

value. He looks at what you've done and finds the best response. And you do the

same to him, and the difference of those two games kind of exploitable. Obviously,

this means basically, if your opponent sees what you're doing, this is the best he

can do against you. This number is the one that's less than 1/1000 of a big blind.

So counterfactual regret is kind of cool because-- it's a good thing I've drawn this

tree. At each of your decision points, now you can regret match. So first of all, you

don't need to be fed back the correct utility [INAUDIBLE]. Here in the example we

gave, we had a u0 and u1. You'll just be fed back some unbiased stochastic number

that averages the value of the game.

For example, if you're doing a regret chain on poker, it's hard to tell if I'm up with

this strategy that has a bunch of terabytes, and you come up with a strategy that's

also a bunch of terrabytes-- what's the value of playing against y [INAUDIBLE]? But

we can just get a sample. We can get a sample. Well you can just run it once. Right,

that's the idea. You get a sample by just saying, OK, just play one hand, and see
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the result of that hand. And you could use either random chance or whatever every

time you decide to do whatever branches of your tree if you do a mix tree. So the

cool thing already is, without counterfactual regret, you can quickly converge the

solution, because a lot of strategies, like fictitious play-- it's the best response. The

best response is hard to calculate sometimes, but each simulation can just be one

iteration through it.

And this is counterfactual regret because [INAUDIBLE] is given assuming that the

player does everything to play to that node. So the waiting here is nature just has its

probabilities. If your opponent plays according to his strategy, but when you play

you always kind of play towards that node, so your weight actually 1 for each of

these options you pick. The cool thing is that once you have the structure set up

where you're just doing one or a few iterations throughout the hand, it's actually

pretty easy to set up different weighting schemes.

For example, if you have two options and the ace of hearts comes on the turn, or

the deuce of clubs comes on the turn, and you don't really have to worry about the

ace of hearts coming on a turn. That tree is fine. That part of the tree has very little

positive regrets. You can say, OK, we'll just-- different game where the ace of hearts

comes about [INAUDIBLE] at a time the deuce of clubs comes, but we're going to

weight the results by 10.

You still get the same answer. It's just that you get a much coarser kind of

[INAUDIBLE] every time the ace of hearts comes, but already kind of know what to

do with that. You can work on the deuce of clubs. So there a lot of different

weightings schemes. This means that the hands can be kind of sampled

intrinsically.

So the final algorithm they had was factual regret plus. So instead of having

accumulated negative regrets, basically a lot of these option regrets can be really

negative. Folding aces pre-flop quickly turns to really negative regret. You lose your

small blind, and hopefully if you play it limit hold 'em, you could win more than the

small blind. So you accumulate a lot of [INAUDIBLE] so set options falls off the map.
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Their innovation in counter factual plus is to, instead of putting a big negative

number to a lot of these things, they just floor them at 0. And the reason they floor

at 0 is because you know this a simultaneous evolution of strategies where even

strategies at the beginning just might not be great strategies, and you want to-- if

regret of something is 0, you can route get regret faster if it's the right thing to do to

respond to your opponent's strategy. All of these things-- suppose you start with a

random initial guess for your opponent's strategy. Then you actually have a pretty

reasonable strategy, which is bet and raise every time with every hand. If your

opponent has a random strategy, he might just fold.

So later in the streets, it's probably [INAUDIBLE] just bet and raise every time with

every hand. He raises you back. It's not like he knows anything. It's a random

strategy. Just raise him back and hope he folds. If he doesn't fold and call, you bet

again an x3, because now the pot is bigger. So he has a 1/3 chance of folding. You

should bet.

So that evolves quick. If you start off with a random tree with no information, that

starts off as the dominant strategy. And then you have to walk that back as your

opponent's strategy evolves also. By the way, they're actually keeping two trees--

one for the small blind strategy, and one for the big blind strategy. And this is

everything with respect to the small blind. The small blind isn't-- so let's just go into

the next slide probably. [INAUDIBLE] have to be.

So let's try to figure out how big the strategy space in limit hold 'em has to be. So

let's concentrate on river nodes because that's most of the nodes. It's a tree so we

just have to calculate the leaves. So first of all, assuming a four bet cap-- the reason

we assume a four bet cap-- well, I don't know why, but it seems that that's-- so this

is one approximation, the four bet cap, but this is kind of normal in types of research

papers. if we have a four bet, there are nine possible actions that get you to the

next street. There are some actions that [INAUDIBLE] like player one bets and

player two folds, but if you don't get to the street, you don't get to the river, and

that's a pretty small percentage of the nodes.
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So why are there nine possible actions? Let's count them. One of the actions that

gets to the next street is check check. So that's one. What are the eight? What are

the other eight?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Right, check raise. Let's try systemic [INAUDIBLE] count them. So I claim that there

are two ways-- one bet in the pot. Player one can bet, and player two can call, or

player one can check, player two can bet, and player one can call. In fact, there are

two ways to put k bets in the pot and k is greater than 0. If you want to put three

bets in a pot, what are the two ways?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Right. Yeah, right. Bet, raise, re-raise, call, and check, bet, raise, re-raise, call. So if

the cap is k bets, there's always 2k plus 1 ways to [INAUDIBLE] three. So there are

nine possible actions in each betting round before the river. So there are three

betting rounds-- pre-flop, flop, and turn.

So let's use some symmetries because I don't think the optimal strategy has you

playing something differently with ace, six of diamonds, ace, six of heart.

[INAUDIBLE] very easy to prove. The optimal strategy doesn't have that. So using

symmetries on a flop-- so how many distinct flops are there? Well, I like to think

about it as where the suits have symmetries. I like to think about it as, well, there

could be three suits in a flop, two suits in a flop, or one suit.

So if there's one suit on a flop, there's 13 [INAUDIBLE] combinations. That's pretty

straightforward. If there are two suits on a flop, what's the combinations? There are

13 possibilities for one of the suits, and there are 13 [INAUDIBLE] for the other suit.

It's based on heart or something like that. The suits are symmetric.

So there are 1014 things [INAUDIBLE]. This is [INAUDIBLE] the things. And if it's

three suited, you just choose three ranks, but it's not 13 choose 2. It's 15 choose 2

because why? I guess the ranks can be equal. So it would 13 choose 2 if the ranks

would be unique, but you'd have three aces on him. So this is actually 15 choose 2.
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So there's 455 three suited flops, [INAUDIBLE] flops. That's kind of the big explosion

in limit hold 'em, pre-flop to flop.

So there is not [INAUDIBLE] possible actions in each betting round. So let's count

the number of turns and rivers. There's [INAUDIBLE] turns and 48 rivers. So

counting that, you have a billion possible action sequences to the river. The

[INAUDIBLE] things in each street, all the flops, then the turns and rivers. But each

river, there could be up to 126 [INAUDIBLE] types. 47 times 46. Making about 6.5

trillion hand river types.

Each node should be visited about 1,000 times. It's a big computational problem,

but it still tractable, especially if you have 900 years of CPU. And they also used

many shortcuts. They use all the symmetries I talk about, and they also have a few

shortcuts. And you can see these trees are big. Terabytes of memory to actually

store your strategy.

So you can't really get that on a node yet. I don't know. Can you fit that on a node

now? Does anybody know? I don't know of a CPU that has [INAUDIBLE] bytes of

RAM yet.

What they did was they broke the problem up into about 100 [INAUDIBLE] different

sub-games, and they just worked on those sub-games. In fact, I guess if you're

clever about it, you can use cache memory when you get down to the river. Things

are pretty close, and you know that using cache memory is faster than using

[INAUDIBLE] memory. You can take advantage of these things. A lot of these

updates through these regrets are just simple addition, and you can just optimize

the heck out of this, and I'm sure they did it.

Let's just try to solve some other games. I have two games that seem accessible.

Suppose we do Omaha eight. Well, this is exactly the same structure as limit hold

'em. You just change the hole cards. So instead of having 47 choose 2 different

river hands, you have 47 choose 4. That's like a multiple 82.5 x to the original tree,

so that's not that bad. 900 CPU hours-- this is just 75,000 CPU hours. If it were a

matter of national security to get the exact solution to Omaha, the military could just
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do it in a few months.

There's also [INAUDIBLE] you can do, by the way. Basically, what they did is--

before they did this, was that they solved the sub-game. In that, basically if you both

get hands together and you say you have to play these hands the same way, that's

basically a sub-strategy. You can consider subspace of your strategy x prime of x

and y prime of y, and you just solved the x prime y prime game, meaning you both

get hands together, probably on the river because that's when bucketing kind of

becomes more necessary.

And you solve that game, and you go, well, how optimal is x prime in the hold

game? And if you're good at bucketing, it may be pretty close. If you're bad at

bucketing, like you put the aces in the same bucket as seven, five suited, you

probably won't get a great answer. So you need to intelligently design your buckets.

You can't-- well, I guess there are also evolutionary things you can do to try to

design buckets and see what things are close to each other. People who have

familiarity with this know that this is kind of hit or miss.

Another game that you can maybe solve is razz. It's definitely as simple as

[INAUDIBLE] a stud. Why is razz simpler than all other games of stud? There are

only 13 different cards. The deuce of spades is the same card as the deuce of

hearts. You can't-- well, you could make flushes, but they're irrelevant.

So unfortunately there are 13 to the 8th power possible ways of cards can come,

because there are four up cards. That's sort of the problem. Kind of the community

information you have is a bigger set, and your trees just get bigger because now

you have one extra street. And you still have 415 choose 3 combinations of any

three ranks as river hand types. So There are 2.4 quadrillion river hands. So that's a

factor of 374 [INAUDIBLE], but we think some of these roads are pretty null.

How many of you actually play razz? A couple of you. OK, great. Good poker class

that people study razz. If you have a queen up and a deuce completes it, you're not

really going to get into a raising war and make it [INAUDIBLE] cap on third street.

Some of the [INAUDIBLE] may be null. You can do some bucketing, perhaps.
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Razz is kind of more natural to bucketing because you can think about what hands

to bucket together. Maybe the king, eight, six, deuce is very close to the king, eight,

six, ace. And the two strategies-- and you can start in hands by rank order of cards

or something like that. So this is 374. This is 82.5. Or you could apply for a grant

and say we need x hours of CPU time. I don't know what the right strategy is, but

these two problems are tractable.

Let's talk about big bet games because there's been some sort of discussion, even

last night, about Snowie. A few people have tried big bet games, and they're

problems. First of all, there's a continuum of bet sizes you can make. The Snowie

solution just assumes three bet sizes. I can bet half the pot, I can bet the pot, or I

can jam, I think. Maybe there's-- I can bet two times the pot, but the problem with

that is that I think that's a little bit too coarse. The question is, if you solved that

game, how close is that solution to the real game?

And that's kind of an interesting question, but you don't even have a complete

strategy. What if some guy bets a quarter of the pot, or 1.5 times the pot, something

that' not on your list? You have to exploit-- and then it gets kind of weird, because

my response to a pot size bet is to raise the pot again. All right, what if he makes a

1.1 times the pot? Is it right to raise the pot-- just raise the pot 1.1 times or raise the

pot 0.9 times so you get back to the same stack sizes so you can do the same thing

in the future. These are difficult questions.

Even if some bets [INAUDIBLE] are non-optimal, our full strategy needs responses

to to the bets. So simple approximations may work. I kind of feel this is kind of a

tough problem, though. And you could just-- just playing a game where you can just

make rigid pot bet sizes, then you might get something actually interesting. But one

of the things with regret matching, if you actually have a lot of bet sizes, suppose

you say, OK, I'm just going to kill this problem, and I'm going to do 0.01 times the

pot, 0.02 times the pot, 0.03 times the pot, and so on and so forth.

The problems is now you have a lot of options which are really close in equity

together, so this regret minimization is going to take a while. It's going to have to
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sort out really close events. And then it's going to have to balance your value bets

with your bluff and things like that. So even just trying to kill it by putting a lot of bet

types may not solve the problem for you.

So two player, three player games are actually kind of interesting. The dress by the

group and using counterfactual regret to create competitive multi-player agents.

And this is a paper done in 2011 or so. And the program for actually first and

second in annual three player limit event-- the first problem is that there's no

guarantee of epsilon convergence. You're not necessarily within epsilon of Nash

equilibrium.

Second problem is that, do you just want to play in Nash equilibrium? There could

be multiple Nash equilibria in multi-way games, especially in these proportional

payout tournaments, satellites where, say, two people get a seat. There are really

nonlinear effects going, and it could [INAUDIBLE] which collusive equilibria are you

playing? In our book, Jared and I point out a game called the rock maniac game

where it's a real poker game where players can use a simple strategy and ensure

you losing. A simple version non-poker version, like a game where you play even or

odds with three players, but the odd man out wins.

So suppose you and I are colluding against the third chump. What would we do?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Right, I would play one, and you'd play two. And the third guy could never win.

There are situations which can come up in poker like that, but I think if there's no

collusion and it's not a tournament, playing Nash equilibria usually turns out OK. I

think that's sort of the argument they were making in creating these strategies.

All right, here are the references. This took about [INAUDIBLE] the time I estimated,

so questions? OK, let's just-- you hand your hand up first.

AUDIENCE: Well, the original strategy finds that the Nash equilibria, if you're playing against

someone who's trying to beat [INAUDIBLE] strategy-- does it work if one of the
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strategies is probabilistic. Let's say two strategy trees--

PROFESSOR: Yeah, yeah, yeah. It does work with--

AUDIENCE: Choose [INAUDIBLE], but you don't know always which one I'll choose.

PROFESSOR: Yeah, it works because you're going to play-- all of these strategies assume that

they could be mixed strategies. If you're not allowed to play 1/3 rock, 1/3 paper, and

1/3 scissors, then you're going to have to play really bad strategy, and there's

definitely times in which mixing is going to be necessary. So, yeah. All of these

strategies have mixing. Yeah?

AUDIENCE: What effects do you think [INAUDIBLE] going to have on limit hold 'em games?

PROFESSOR: I don't now. I think pretty much before the solution came out the big online players

kind of knew that a lot of people were playing near optimal, and I think the game is

kind of dead. What do you think, Mike?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Right. Too bad Matt doesn't come here.

AUDIENCE: [INAUDIBLE] are already basically doing this anyway.

PROFESSOR: Well, no. I mean, even if you have the strategy, you have to learn it. The problem is

that, if you go to a casino and you play somebody who's a good limit hold 'em

player, he's-- because these types of strategies have been out for a while, they

already played much closer to optimal than they did before. So I think this would

have absolutely no effect on heads up limit hold 'em. It's already kind of no one--

yes?

AUDIENCE: So can you talk more about different ways you can do approximations. [INAUDIBLE]

mentioning earlier bucketing all of the different hands [INAUDIBLE] the ranks or

what are some other things we can do?

PROFESSOR: It's an endless [INAUDIBLE] be clever in bucketing. So bucket hand types together.
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One kind of clever thing you can do is try to cut out the river entirely by just

estimating your equity on the river. Of course, that's not going to be your showdown

equity because you may be forced to face of a bet. So you try some sort of implied

value of your hand. Let's see. What other bucketing things.

I mean, in some games there's a sort of a natural way of bucketing hand types. Like

In the river on Omaha, you could just try to bucket the cards that actually play and

ignore the other cards. The thing is that, when you do things like that, [INAUDIBLE]

losing assisting, we call it card removal. Card removal and blocking players from

having the nuts and things like that are pretty important-- do turn out to be a pretty

important part of the game theory optimal solution when you're getting down to the

milli big blind kind of level.

And if you don't think about card removal at all, then you actually have a strategy

that can be exploited pretty easily. Actually, I talked about this yesterday. The thing

is typically when the pot is p and you're facing a bet, you want to make them

indifferent to bluffing. He's betting 1 to win p, so you want to call about pr over p

plus 1 at the time. If you don't call this much, he's going to bluff and take it. So that's

sort of the thing. We're saying the bet is 1 and the pot is p.

So if the pot is 10, and he bets 1, and he takes it more than 1/11 at the time, he's

going to just-- [INAUDIBLE] bluff everything. The real problem becomes that, if you

don't think about card removal at all, he can start bluffing hands in which he knows

it's more likely you have a mediocre hand or something that includes a strong hand.

One real example is in PLO when there is a flush on the board, what's a good bluff?

AUDIENCE: You have ace of [INAUDIBLE].

PROFESSOR: Right, you have the ace in a suit. You don't have anything else. That's a great bluff,

because you're blocking him from having a great hand, and you're blocking all of his

not hands and a lot of his really good hands. And he's much more likely to fold,

because if you bet the pot, a lot of his hands he's [INAUDIBLE] himself with

[INAUDIBLE] with the nut flush. Oh, I have a natural call. Are you all in? I have the

nuts? OK, I call. So that's why card removal is important. Yeah?
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AUDIENCE: So is my understanding correct that optimal [INAUDIBLE]?

PROFESSOR: Yes.

AUDIENCE: And has there been any study of optimal [INAUDIBLE].

PROFESSOR: Sort of like utility theory. In poker in general, it's kind of weird. People think a lot

about that [INAUDIBLE] what tournament they should enter, what games they

should play. But there hasn't been a study really optimizing your own personal utility

within the games. The assumption is kind of like, well, I'm going to use all this cool

utilities theory [INAUDIBLE] to figure out what game I'm playing. As long as I'm

playing the game, I'm just going to try to win the most money. That's sort of been

the attitude, and I think that's actually correct for most [INAUDIBLE].

In limit hold 'em, [INAUDIBLE] you need bank rolls of hundreds of bets. You're not

going to try to optimize and try to win some fraction of a bet with your utility function

by lowering the variance. That is an interesting question, because maybe-- I feel

that, if there is some utility consideration-- like maybe in a tournament you feel your

chips are non-linear-- maybe you are going to quit playing your marginal hands

because of utility considerations.

AUDIENCE: [INAUDIBLE] like the fountain table of major events. They'll go beyond ICM to say

maybe I won't coin flip for a $10 edge [INAUDIBLE] step up.

PROFESSOR: I mean, if you use ICM, those utilities are already kind of calculated, but yeah. For

example, final table of the main event, I'm not only using ICM, but I'm thinking, well,

$3 million-- $4 million compared to $2 million is a much smaller step to me than $2

million is compared to 0 in my own personal utility. Like $0.5 million compared to $2

million versus $2 million compared to $3.5 million. So I need to optimize utility. I

mean, yeah. I think that's kind of worthy of study. Yeah?

AUDIENCE: What is it about the analytics of poker that makes it so popular with trading firms?

And how does it--

PROFESSOR: Oh, OK. That's a great question.
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AUDIENCE: How do you use it professionally, all of this stuff?

PROFESSOR: Well, I mean, I think poker is just kind of-- if you think what one game-- if you could

teach traders one game, what one game would represent what traders have to

know? Well poker-- there are a lot of actors. There's incomplete information. That's

one big thing.

And you do have to do a lot of thinking of what your counter party is doing. If he

wants to trade against you, he puts a bid or offer-- some of that is why there's this

[INAUDIBLE]. Are you trying to get out of risk? [INAUDIBLE] big position he's trying

to get out of, or do you have to be worried about these orders and things like that?

And also poker gives you sort of the skills to trade that-- suppose you know

something is worth $10. [INAUDIBLE] you're going to make around it [INAUDIBLE].

Knowing nothing, you might make-- bid [INAUDIBLE] offer at 10/10, which means

you're willing to buy the [INAUDIBLE] or sell it at 10/10, but you know something

about the counter party. You may know the counter party can be a better buyer

than seller or that buying is the risky part [INAUDIBLE] is the risky part. That kind of

has a quant.

Also, as a quant, doing poker analytics is very similar to the analysis we do in

trading. A lot of this analysis-- how these strategies work, do these strategies really

return what we think they return are similar to discussions we have in our trading

strategy. I'm glad I'm able to talk to you about this, because if you're interested in

doing poker strategies, you'll probably be interested in doing trading strategies, too.

Any more questions? Yes?

AUDIENCE: What about doing the deviation from [INAUDIBLE] the [INAUDIBLE] detecting

deviation or let's say somebody goes from playing optimally [INAUDIBLE] not

playing optimal [INAUDIBLE].

PROFESSOR: Yeah, I mean that's a very interesting thing, and that's actually hard to determine

because that feels a little bit harder than this because this is [INAUDIBLE]. It's like
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I'm trying to figure out the optimal strategy, and I just play this, and whatever money

comes to me comes to me. You open your arms. The money comes to you.

The other thing is, oh, well he's playing badly, so I'm going to go there and take his

money. But then if I deviate from optimal, I'm also opening up myself to being

exploited. So that's kind of hard. That's much more of a dynamic problem. When

does he go on tilt? How long was he on tilt? What evidence do we have that he's on

tilt. I know that [INAUDIBLE], the guys in CMU, were looking into some sort of zero

loss way to exploit your opponents, because you just figure out when your

opponents are playing badly, how much they've given up in playing sub-optimally,

and then you go to a [INAUDIBLE]. But you only open up yourself to, say, half the

money he's given up, or something like that, playing badly. And the metric is-- so

there's some sort of gaming algorithm you can do to do that, but yeah that's

definitely another field of study. There are a lot of interesting fields that can come

out poker [INAUDIBLE]. All right. I guess that's it.

[APPLAUSE]
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