15.401 Recitation

8: Capital Budgeting

Learning Objectives

- ☐ Review of Concepts
 - **ONPV**
 - O Payback Period
 - **OIRR**
 - O Profitability index
- Examples
 - O Bart's Super-Widget*

Review: capital budgeting

- □ Decision:
 - O Accept or reject a project
 - O Compare two projects
- □ Decision rule:
 - O NPV, IRR, payback period, etc.
- Information
 - O Cash flow projection
 - O Risk projection
 - O Tax regulation

Review: NPV

□ Net present value (NPV) of a project is

$$NPV \equiv \sum_{t=0}^{\infty} \frac{CF_t}{\left(1 + r_t\right)^t} > 0$$

- Decision should be based on after-tax cash flow instead of accounting earnings.
- Operating profit = operating revenue operating expenses without depreciation
- □ CF (1 τ) x operating profit capital expenditure + τ x depreciation

(τ is the tax rate)

Review: NPV

- □ Decision rule:
 - O Independent projects: take all projects with NPV>o
 - O Mutually exclusive projects: take projects with the highest NPVs
- □ The NPV rule **dominates all other rules** because it takes into account the **maximum amount of information**, including timing of all cash flows and risks, and makes the correct decision based on value creation.

Review: payback period

☐ The payback period is the minimum T such that

$$\sum_{t=1}^{T} CF_t \ge CF_0 = I_0$$

- \Box T is the minimum number of period required to "recover" the initial investment, I_0 .
- ☐ Decision rule:
 - O Independent projects: take all projects with a payback period less than a fixed threshold T^* .
 - O Mutually exclusive projects: take the project with the lowest payback period.

Review: payback period

- ☐ Pro:
 - O Easy to calculate
- ☐ Con:
 - O Ignores cash flows after the payback period
 - O Ignores time value of money
- □ Discounted payback period: minimum T such that

$$\sum_{t=1}^{T} \frac{\mathrm{CF}_t}{\left(1+r_t\right)^t} \ge \mathrm{CF}_0 = I_0$$

O Problem: still ignores cash flows after the payback period

Review: IRR

☐ The **internal rate of return (IRR)** is the discount rate that satisfies

$$0 = \sum_{t=0}^{\infty} \frac{CF_t}{\left(1 + IRR\right)^t}$$

- □ IRR is the implied rate of return of the project.
- □ Decision rule:
 - O Independent projects: take the projects with IRR $> r^*$, where r^* is the required rate of return.
 - O Mutually exclusive projects: take the project with the highest IRR (provided it is greater than r*).

Review: IRR

- ☐ IRR gives the same decision as NPV if
 - O Cash outflow occurs only at time o
 - O Only one project is under consideration
 - O Required cost of capital is the same for all periods
 - O Threshold rate is set to the required cost of capital
- □ Potential problem:
 - O IRR may not exist
 - O There may be multiple IRRs for a single cash flow.
 - O IRR rule gives the wrong decision for mutually exclusive projects.

Review: profitability index

☐ The profitability index of a project is

$$PI = \frac{1}{I_0} \sum_{t=1}^{\infty} \frac{CF_t}{(1+r_t)^t}$$

- ☐ Decision rule:
 - O Independent projects: take all projects with PI > 1.
 - O Mutually exclusive projects: take the project with the highest PI.
- ☐ PI gives the same decision as NPV if
 - O Cash outflow occurs only at time o
 - O There is only one project under consideration.

□ Project overview:

O Bart Co., a profitable widget maker, has developed an innovative new product called the Super-Widget. The company has invested \$300,000 in R&D to develop the product and expects that it will capture a large share of the market.

□ Capital requirement:

O Bart Co. will have to invest \$750,000 in new equipment. The machines have a useful life of 5 years, with an expected salvage value of \$0.

Courtesy of Bart Raeymaekers. Used with permission.

□ Revenue projection:

- O Over the next five years, unit sales are expected to be (5, 8, 12, 10, 6) thousand units.
- O Prices in the first year will be \$480, and then will grow 2% annually.

□ Operating expenses:

- O Sales and administrative costs will be \$150,000/year.
- O Production costs will be \$500/unit in the first year, but will decline by 8% every year thereafter.
- O The tax rate is 35% and the after-tax cost of capital is 12%.

Courtesy of Bart Raeymaekers. Used with permission.

□ Revenue and Cost

	t=1	2	3	4	5
Revenue					
Units	5,000	8,000	12,000	10,000	6,000
Price/Unit	480	490	499	509	520
Total	2,400,000	3,916,800	5,992,704	5,093,798	3,117,405
Expenses					
SG&A	150,000	150,000	150,000	150,000	150,000
Cost/Unit	500	460	423	389	358
Total	(2,650,000)	(3,830,000)	(5,228,400)	(4,043,440)	(2,299,179)
Op. Profit	(250,000)	86,800	764,304	1,050,358	818,226

□ Depreciation and Tax

	t=1	2	3	4	5
Op. Profit	(250,000)	86,800	764,304	1,050,358	818,226
Depreciation	(150,000)	(150,000)	(150,000)	(150,000)	(150,000)
EBIT	(400,000)	(63,200)	614,304	900,358	668,226
Taxes @35%	140,000	22,120	(215,006)	(315,125)	(233 , 879)
Net income	(260,000)	(41,080)	399,298	585,233	434,347

□ Cash Flow

	t=o	1	2	3	4	5
Net income		(260,000)	(41,080)	399,298	585,233	434,347
CAPEX	(1,000,000)					
Cash flow	(1,000,000)	(110,000)	108,920	549,298	735,233	584,347
PV @ 12%	(1,000,000)	(98,214)	86,830	390,979	467,254	33 ¹ ,574
NPV	\$178,42 3					

□ Reminder:

O CF = after-tax operating income + depreciation tax shield– capital expenditure

= (1 – τ) x operating income + τ x depreciation– capital expenditure

O The accounting net income is taxed even if it is negative.

O Depreciation is not a cash flow but reduces taxes.

2010 / Yichuan Liu

MIT OpenCourseWare http://ocw.mit.edu

15.401 Finance Theory I Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.